R. C. Paul, V. Nagpal, and S. L. Chadha

Received September 3, 1971

Addition compounds of alkoxy tin (IV) trichlorides, $Sn(OR)Cl_3$, (where $R = CH_3$, C_2H_5 , C_3H_7 and C_2H_4Cl) with hexamethyl phosphoramide, triphenyl phosphine oxide, trimethyl phosphate, pyridine N-oxide, 8-hydroxyquinoline N-oxide and a,a'-dipyridyl N-N' dioxide have been prepared. All the complexes have 1:1 stoichiometry, are predominantly covalent and contain six coordinated tin due to coordination of the oxygen atoms of the ligand and the alkoxy group except for the dipyridyl dioxide complex in which alkoxy bridging is not present.

Introduction

The reluctance of the polymeric metal alkoxides¹ to form complexes with donor molecules has been attributed to the stronger basic nature of the alkoxy oxygen as compared to that of the donor atom of the ligand. However, incorporation of an electronegative atom like chlorine in the alkoxy group or in place of alkoxide group results in the reduction of polymerization^{2,3} and this might induce the metal alkoxide to behave as an acceptor. This has been indicated by examining the acceptor properties of aluminium tris(2-chloroethoxide)⁴ and alkoxy antimony(V) tetrachlorides.5

Although addition compounds of tin(IV) halides with some phosphoryl and amine-oxide ligands have been prepared, there appears to be no report of the formation of complexes with tin alkoxides or alkoxy tin(IV)halides. With a view to confirming the above mentioned possibility, we report the preparation of addition compounds of alkoxy tin(IV) trichlorides with these ligands.

Experimental Section

nicated).

Solvents were purified by fractional distillation and the middle fractions were collected for use. Tin(IV) chloride was distilled in an all glass apparatus before use. Hexamethyl phosphoramide (BDH), pyridine N-

oxide (Fluka) and trimethyl phosphate (BDH) were used after distillation. Triphenyl phosphine oxide (Fluka) was used as such. 8-hydroxy quinoline Noxide and a-a'-dipyridyl N-N'dioxide were prepared by the method of Warren et al.6 and Quagliano et al.,7 respectively.

Methoxy-, ethoxy-, and n-propoxy tin(IV) trichloride monoalcoholates (Sn(OR)Cl₃.ROH) were prepared by a method described by Bradley et al.8 while 2-chloro ethoxy tin(IV) trichloride monochloroethylate (Sn(OC₂H₄Cl)Cl₃.C₂H₄ClOH) was prepared as described by Paul et al.9

Complexes with hexamethyl phosphoramide were prepared by mixing hexamethyl phosphoramide with methanol solution of the alkoxide in nearly equimolar ratio of reactants and adding dry ether when solid compounds separated out. Similar procedure was adopted for the preparation of a complex of trimethylphosphate. In the case of pyridine N-oxide complexes, both the reactants were mixed as their solutions in methanol when a white precipitate appeared. However, the complexes of triphenyl phosphine oxide, 8-hydroxy quinoline N-oxide and a-a'-dipyridyl N-N'dioxide were prepared by refluxing the mixture of the ligand with alcoholic solution of the alkoxide when the solid products precipitated out. There was no change in the composition of the complexes on changing the proportions of the reactants.

In all the cases, the complexes obtained were filtered in anhydrous condition, washed with dry ether and dried under vacuum.

A mixed ligand complex formulated as Sn(OC₂H₅)-Cl₃.HMPA.pyridine was prepared by dissolving the HMPA complex in pyridine and precipitating the white solid by adding dry ether.

Results and Discussion

The reactions of the ligands (L) such as hexamethyl phosphoramide (HMPA), triphenyl phosphine oxide (TPPO), trimethyl phosphate (TMP), pyridine N-oxide (Py-O), 8-hydroxyquinoline N-oxide (HQ-O) and a-a'-dipyridyl N-N'dioxide (dipy-O2) with Sn(OR)-

R.N. Brown and G. Winter, J. Chem. Soc., 724 (1963).
 R.C. Paul, S.L. Chadha, and H.S. Makhni, Ind. J. Chem., 9, 365 (1971); R.C. Paul, P. Singh, H.S. Makhni and S.L. Chadha, J. Less Common Metals, 17, 437 (1969).
 T. Saegusa, S. Tomita, and T. Ucshima, J. Organometal. Chem., 10, 360 (1967).
 R.C. Paul, H.S. Makhni, and S.L. Chadha, Chem. and Ind. (London) 829 (1970).

⁽London), 829 (1970). (5) R.C. Paul, Harmeet Madan, and S.L. Chadha; (to be commu-

⁽⁶⁾ C.G. Warren, K. Ramaiah, and M.N. Zagann, J. Inorg. Nucl. Chem., 31, 3466 (1969).
(7) D.P. Simpson, A. Vinciguerra, and J.V. Quagliano, Inorg. Chem.

⁽¹⁾ D.P. Simpson, A. Vinciguerra, and J.V. Quagnano, *Inorg. Chem.* 2, 285 (1963).
(8) D.C. Bradley, E.V. Caldwell, and W. Wardlaw, *J. Chem. Soc.*, 3039 (1957).
(9) R.C. Paul, P. Singh, S.L. Chadha, and H.S. Makhni, *J. Inorg. Nucl. Chem.*, 32, 2141 (1970).

Table I. Complexes formulated as Sn(OR)Cl₃. L where L stands for some phosphoryl and amine-oxide ligand.

	Compound	Colour of solid	M.P. (°C)	(%) Found	tin Caltd.	(%) cl Found	hlorine Caltd.	Mol. Conc. $\times 10^3$	Mol. Cond. cm ² ohm ⁻¹ mole
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	$\label{eq:spectral_series} Compound \\ Sn(OCH_3)Cl_3 . HMPA \\ Sn(OC_3H_3)Cl_3 . HMPA \\ Sn(OC_3H_4Cl)Cl_3 . HMPA \\ Sn(OC_3H_7)Cl_3 . HMPA \\ Sn(OCH_3)Cl_3 . TPPO \\ Sn(OC_2H_3)Cl_3 . TPPO \\ Sn(OC_2H_4Cl)Cl_3 . TPPO \\ Sn(OC_3H_7)Cl_3 . TPPO \\ Sn(OC_3H_7)Cl_3 . TPPO \\ Sn(OC_4H_4Cl)Cl_3 . TMP \\ Sn(OC_4H_5)Cl_3 . Py-O \\ Sn(OC_2H_3)Cl_3 . Py-O \\ Sn(OC_2H_5)Cl_3 . Py-O \\ Sn(OC_3H_7)Cl_3 . Py-O \\ Sn(OC_3H_7)Cl_3 . Py-O \\ Sn(OC_3H_7)Cl_3 . Py-O \\ Sn(OC_3H_4Cl)Cl_3 . Py-O \\ Sn(OC_4H_5)Cl_3 . Py-O \\ Sn(OC_4H_5)Cl_3 . Py-O \\ Sn(OC_3H_7)Cl_3 . Py-O \\ Sn(OC_4H_5)Cl_3 . Py-O \\ Sn(OC_4H_5)Cl_5 . HO-O \\ Sn(OC_4H_5)Cl_5 . HO-O \\ Sn(OC_4H_5)Cl_5 . HO-O \\ Sn(OC_5H_5)Cl_5 . HO-O \\ Sn($	solid White White White White White White White White White White White White Uight Brown Light Brown	(°C) 267-68 254 270 259 >290 272d 270d 262d - 240 254 254 254 254 254 254 254 254	Found 36.15 25.99 24.50 25.70 20.17 20.20 20.70 26.10 32.90 31.90 29.80 30.80 28.30 25.30	Caltd. 36.11 26.40 24.40 25.60 22.20 21.70 20.20 21.20 26.70 33.80 32.50 29.70 31.30 28.40 25.50	Found 32.15 22.50 29.20 22.08 30.70 30.90 29.30 36.10 27.90 24.90 29.10	Caltd. 32.40 23.70 29.36 22.90 	$\begin{array}{c} \times \ 10^{3} \\ \hline 0.6 \\ 4.6 \\ \hline - \\ 0.6 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.06 \\ \hline 0.9 \\ 0.8 \\ 0.2 \\ 0.5 \\ \hline 3.2 \\ \end{array}$	cm ² ohm ⁻¹ mole 2.4 0.4
16. 17. 18. 19. 20.	Sn(OCH ₃)Cl ₃ . Dipy $-O_2$ Sn(OC ₂ H ₃)Cl ₃ . Dipy $-O_2$ Sn(OC ₂ H ₄ Cl)Cl ₃ . Dipy $-O_2$ Sn(OC ₃ H ₇ Cl). Dipy $-O_2$ Sn(OC ₂ H ₃)Cl ₃ . HMPA. Pyridine	White White White White White	265d 258d 242d 260d > 300	25.50 25.30 24.8 26.90 21.80	26.70 25.90 25.22 27.03 22.50	23.90 23.50 28.80 23.40 19.60	23.98 23.24 28.94 23.90 20.05	1.3 1.6 1.4 0.34	9.0* 3.1* 1.76* 22.0*

* In DMSO and the others in nitrobenzene.

Table II.	Major	infrared	frequencies of	the	complexes	formulated	as	Sn(OR)Cl ₃ . L
-----------	-------	----------	----------------	-----	-----------	------------	----	---------------------------

		ν(PN	1)			
Phosphryl Compounds	v(P=O)	or v(P-O- or (P-	-C) v(Sr -C)	Sn)	v(O→Sn)	v(SnCl)
HMPA Sn(OCH ₃)Cl ₃ . HMPA Sn(OC ₂ H ₃)Cl ₃ . HMPA Sn(OC ₂ H ₄ Cl)Cl ₃ . HMPA Sn(OC ₃ H ₇)Cl ₃ . HMPA TPPO Sn(OCH ₃)Cl ₃ . TPPO	1205 1170 1175 1165 1175 1190 1130	985 995 995 1000 995 1445 1445		510 525 510 520 510	390 380 395 385 	320,315 315,310 310,295 320,300
Sn(OC ₂ H ₃)Cl ₃ . TPPO Sn(OC ₂ H ₄ Cl)Cl ₃ . TPPO Sn(OC ₃ H ₇)Cl ₃ . TPPO TMP Sn(OC ₂ H ₄ Cl)Cl ₃ . TMP	1130 1110 1125 1275 1230	1465 1470 1470 1040 1055		505 510 520 505	380 385 370	315,305 315,295 320,300
Amine oxide Compounds	ν(N-O)	δ(NO)	v(C-H) out ol plane def.	v(Sn Sr	v(O→Sn) n)	ν(SnCl)
$\begin{array}{l} \hline Py=O\\ Sn(OCH_3)Cl_3 . Py=O\\ Sn(OC_2H_3)Cl_3 . Py=O\\ Sn(OC_2H_4Cl)Cl_3 . Py=O\\ Sn(OC_2H_4Cl)Cl_3 . Py=O\\ HQ=O\\ Sn(OC_2H_4Cl)Cl_3 . HQ=O\\ Dipy=O_2\\ Sn(OCH_3)Cl_3 . Dipy=O_2\\ Sn(OCH_3)Cl_3 . Dipy=O_2\\ Sn(OC_2H_4Cl)Cl_3 . Dipy=O_2\\ Sn(OC_2H_4Cl)Cl_3 . Dipy=O_2\\ Sn(OC_3H_7)Cl_3 . Dipy=O_2\\ \end{array}$	1245 1195 1190 1185 1190 1280 1240 1265,1255 1235,1205,1185 1240,1205,1190 1240,1200,1180 1245,1205	,840 830 828 820 825 840 825 852,840 835,820 835,825 825,815 835,825	752 775 775 780 770 — 745 770 765 775 —	490 495 510 530 	380 370-380 390 380 370 390,365 460,400,370 440,395,370 400,385,370	310 310,295 310,290 310,300 310,295 310,295 310,290 315,310 310,295 310

^a Absence of such a band in this region.

Cl₃. ROH (where $R = CH_3$, C_2H_5 , C_3H_7 , and C_2H_4Cl) produce addition compounds formulated as Sn(OR)-Cl₃. L. The results of analyses are given in Table I. These compounds are insoluble in most of the common organic solvents except for nitrobenzene and dimethylsulphoxide in which some of them have slight solubility. Low value of molar conductance of the complexes (Table I) in these solvents may be ascribed to their predominently covalent nature. The conductance of a number of Uni-Univalent electrolytes lies between 25-35 cm² ohm⁻¹ mole⁻¹ in nitrobenzene¹⁰ and 60-80 cm² ohm⁻¹ mole⁻¹ in dimethylsulph-

(10) D.J. Phillips and S.Y. Tyrrce, J. Amer. Chem. Soc., 83, 1806 (1961).
(11) R.C. Paul, P. Singh, and S.L. Chadha, Ind. J. Chem., 7, 625 (1959).

Table In.			
Py-O	SnCl ₄ . 2Py–O	Sn(OCH ₃)Cl ₃ . PyO	Assignments
541	570	563	ligand
518	536	532	ligand
		400	
		490	Sn Sn
463	440	452	ligand
—	384	380	O→Sn
	336		SnCl
_	308	310	Sn—Cl
ТРРО	SnCl ₄ . 2TPPO	Sn(OCH ₃)Cl ₃ . TPPO	Assignment
			.0.
_		510	Sn Sn
460 m	456 m	455 m	ligand
448 m	446 m	448 m	ligand
407	410 m	470 III	ligand
403 W	410 111		ligano
293 m	325 sh	390 s	O→Sn
	337 s	_	
	320 s	320 s	SnCl
	298 s	305	SnCl

oxide.¹¹ The molecular weight of these complexes could not be determined due to their insufficient solubility in these solvents.

Cabla M

The P=O stretching frequency in the phosphoryl complexes is found to have decreased as compared to those in the free ligand (Table II) which may be due to the coordination of the phosphoryl oxygen^{12,13} atom to tin. The P-C and P-O-C stretching frequencies in TPPO and TMP respectively and the P-N frequency in HMPA shifts to higher spectral region which further supports the above mode of coordination.12,13 Similarly examination of the spectra of amine-oxide ligands (Table II) reveals the lowering of N-O stretching and bending frequencies while the C-H stretch (out of plane deformation) shifts to the higher frequencies. This may also be due to the coordination of oxygen atom of these ligands14.15 to Un-coordinated dipy-O2 have two bands⁷ cortin. responding to each of the N-O stretching and bending modes and these bands shift to lower frequencies on complex formation. This indicates that $dipy-O_2$ acts as a bidentate ligand.

In contrast to the formation of 1:1 addition compounds by 8-hydroxy quinoline¹⁶ or pyridine,¹⁶ their oxides form only 1:1 complexes. In the monodentate ligand complexes, the coordination number of tin might be five as is known for corresponding 1:1 complexes of TPPO with Me₃SnCl.¹⁷ The other possibility is that tin may attain hexa-coordination where the complexes might acquire dimeric framework analogous to the parent monoalcoholate of these alkoxides⁸ and some compounds of alkoxy titanium(IV) halides.^{1,2} The evidence for the dimeric framework is provided by the presence of a strong intensity band present at 480-530 cm⁻¹ region which is not present in the ligands but is present in Sn(OR)Cl₃. ROH and

(12) J.T. Donoghue and R.S. Drago, Inorg. Chem., 2, 1158 (1963).
(13) J.P. Clark, V.M. Langford, and C.J. Wilkins, J. Chem. Soc.
(14) N.M. Karayannis, A.N. Spcca, L.L. Pytlewski, and M.M. Labes,
J. Less Common Metals, 22, 117 (1970).
(15) Y. Kawaski, M. Hori, and K. Venaka, Bull. Chem. Soc. Japan,
40, 2463 (1967).
(16) Veena Nagpal (Unpublished work).
(17) V.G. Kumar Das, W. Kitching, J. Organometal Chem., 13, 523

(1968).

might be assigned to Sn Sn vibrations.¹⁸ The fact that such a band is also absent in the adducts of tin(IV), compounds not involving alkoxy group with TPPO¹³ and Py-O¹⁵ favours the above assignment and this is obvious from a comparison of the spectra as given in Table III.

A further support is provided by the fact that such a band is absent in the 1:1 complexes with dipy- O_2 and also in 1:2 complexes with 8-hydroxy quinoline¹⁶ or pyridine.¹⁶ This might be due to the fact that in these complexes alkoxy bridging is absent since tin attains hexa-coordination without this autocomplexation.

All the compounds have strong intensity bands in 290-320 frequency region (Table II) and this is the region where Sn-Cl vibrations of SnCl₆²⁻ occur¹⁹ (v₃ for (NH₄)₂ SnCl₆ is at 312 cm⁻¹).¹⁹ The spectra of solid adducts of HMPA closely resemble their spectra in solution in nitrobenzene and the position of bands

corresponding to Sn-Cl and Sn Sn are not altered much, which is indicative of the similar structure in both the solid and solution state.

Apart from the Sn-Cl and the ligand vibrations in the CsBr region, the complexes show some additional bands at 370-440 cm⁻¹ region which may be assigned to $O \rightarrow Sn$ vibrations^{15,20} and these bands are absent in analogous compounds with pyridine or dipridyl since N-Sn vibrations are known to absorb below 250 cm⁻¹. Assignment of the bands corresponding to Sn-Cl and $O \rightarrow$ Sn vibrations agrees well with the previous work (Table III) in the complexes of some of these ligands with tin(IV) chloride.13,15

Mixed Ligand Complex. A complex formulated as

(18) Y. Kawaski, T. Tanaka, and R. Okawara, J. Org. Chem., 6, (18) Y. Kawaski, T. Tanaka, and R. GRENELE, J. 196
(19) I.R. Beattie, G.P. McQuillon, L. Rule, and M. Webster, J. Chem. Soc., 1514 (1963).
(20) R.C. Paul, H.R. Signal, and S.L. Chadha, J. Inorg. Nucl. Chem., 52, 3205 (1970); R.C. Paul and S.L. Chadha, J. Inorg. Nucl. Chem., 31, 2753 (1969).
(21) N.S. Gill, R.H. Nuttall, D.E. Scaife, and D.W.A. Sharp, J. Inorg. Nucl. Chem., 18, 79 (1961).

Paul, Nagpal, Chadha | Addition Compound of Alkoxy Tin(IV) Trichloride

Sn(OC₂H₅)Cl₃. HMPA. pyridine has also been prepared. The infra-red spectrum of this complex shows the bands corresponding to coordinated pyridine^{21,22} at 1630, 1600 cm⁻¹ v(C····C and C····N) and the ring vibrations at 1005, 620 and 415 cm⁻¹ along with the vibrations due to coordinated HMPA. Of course the

(22) R.C. Paul and S.L. Chadha, Spectrochim. Acta, 22, 615 (1966).

bands present in HMPA complex which is assigned to O.

Sn Sn vibrations is absent which suggests the possible absence of alkoxy bridging in this complex. This might be mainly due to the fact that tin in HMPA complex prefers coordination from nitrogen atom of pyridine than to self complexation through alkoxy bridging.